**Table 0-1.** Combined  $10^4 \times \sigma(r)$ , assuming r=0 after 7 years of observation, keeping only the 28% cleanest part of the sky, assuming no decorrelation and observing efficiency in Chile same as at Pole.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 6.3 | 5.0 | 4.5 | 4.0 | 3.5 |
| 6          | 12  | 5.5 | 4.7 | 4.3 | 3.9 | 3.5 |
| 9          | 8.7 | 5.1 | 4.5 | 4.1 | 3.8 | 3.4 |
| 12         | 7.1 | 4.8 | 4.3 | 4.0 | 3.7 | 3.4 |
| 18         | 5.7 | 4.4 | 4.1 | 3.8 | 3.6 | 3.3 |
| 30         | 4.4 | 3.9 | 3.7 | 3.6 | 3.4 | 3.2 |

**Table 0-2.** Same as top, but assuming 50% Chilean efficiency.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 6.3 | 5.0 | 4.5 | 4.0 | 3.5 |
| 6          | 22  | 5.9 | 4.9 | 4.4 | 3.9 | 3.5 |
| 9          | 15  | 5.6 | 4.8 | 4.3 | 3.9 | 3.5 |
| 12         | 12  | 5.4 | 4.6 | 4.2 | 3.9 | 3.5 |
| 18         | 8.8 | 5.1 | 4.5 | 4.1 | 3.8 | 3.4 |
| 30         | 6.2 | 4.6 | 4.2 | 3.9 | 3.7 | 3.3 |

**Table 0-3.** Same as top, but assuming 1% unmodeled foreground residual uncertainty.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 7.0 | 5.9 | 5.5 | 5.1 | 4.7 |
| 6          | 13  | 6.3 | 5.6 | 5.2 | 4.9 | 4.6 |
| 9          | 9.2 | 5.9 | 5.4 | 5.1 | 4.9 | 4.6 |
| 12         | 7.8 | 5.7 | 5.2 | 5.0 | 4.8 | 4.5 |
| 18         | 6.5 | 5.3 | 5.0 | 4.9 | 4.7 | 4.5 |
| 30         | 5.4 | 4.9 | 4.8 | 4.7 | 4.5 | 4.4 |

Table 0-4. Same as top, but assuming additional foreground decorrelation parameters.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 8.4 | 6.7 | 6.0 | 5.2 | 4.4 |
| 6          | 16  | 7.3 | 6.2 | 5.6 | 5.0 | 4.3 |
| 9          | 12  | 6.8 | 5.9 | 5.4 | 4.9 | 4.3 |
| 12         | 9.7 | 6.4 | 5.7 | 5.3 | 4.8 | 4.2 |
| 18         | 7.8 | 5.8 | 5.3 | 5.0 | 4.6 | 4.1 |
| 30         | 6.0 | 5.1 | 4.8 | 4.6 | 4.3 | 4.0 |

Table 0-5. Same as top, but assuming we keep the 58% cleanest part of the full sky

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 6.3 | 5.0 | 4.5 | 4.0 | 3.5 |
| 6          | 11  | 5.4 | 4.6 | 4.2 | 3.8 | 3.5 |
| 9          | 8.0 | 5.0 | 4.4 | 4.1 | 3.7 | 3.4 |
| 12         | 6.6 | 4.6 | 4.2 | 3.9 | 3.6 | 3.3 |
| 18         | 5.3 | 4.2 | 3.9 | 3.7 | 3.5 | 3.2 |
| 30         | 4.1 | 3.6 | 3.5 | 3.4 | 3.2 | 3.1 |

**Table 0-6.** Combined  $10^4 \times \sigma(r)$ , assuming r=0.003 after 7 years of observation, keeping only the 28% cleanest part of the sky, assuming no decorrelation and observing efficiency in Chile same as at Pole.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 9.1 | 7.8 | 7.2 | 6.7 | 6.1 |
| 6          | 14  | 7.9 | 7.2 | 6.8 | 6.4 | 5.9 |
| 9          | 11  | 7.4 | 6.8 | 6.5 | 6.2 | 5.8 |
| 12         | 9.0 | 7.0 | 6.5 | 6.3 | 6.0 | 5.7 |
| 18         | 7.6 | 6.4 | 6.1 | 5.9 | 5.7 | 5.5 |
| 30         | 6.3 | 5.8 | 5.6 | 5.5 | 5.4 | 5.2 |

Table 0-7. Same as top, but assuming 50% Chilean efficiency.

| Chile\Pole | 0   | 6          | 9   | 12  | 18  | 30  |
|------------|-----|------------|-----|-----|-----|-----|
| 0          |     | 9.1        | 7.8 | 7.2 | 6.7 | 6.1 |
| 6          | 24  | 8.5        | 7.5 | 7.0 | 6.5 | 6.1 |
| 9          | 17  | 8.2        | 7.3 | 6.9 | 6.4 | 6.0 |
| 12         | 14  | <b>7.8</b> | 7.1 | 6.7 | 6.3 | 5.9 |
| 18         | 11  | 7.4        | 6.8 | 6.5 | 6.2 | 5.8 |
| 30         | 8.2 | 6.6        | 6.3 | 6.1 | 5.8 | 5.6 |

Table 0-8. Same as top, but assuming 1% unmodeled foreground residual uncertainty.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 9.7 | 8.4 | 7.9 | 7.4 | 6.9 |
| 6          | 15  | 8.5 | 7.8 | 7.4 | 7.0 | 6.7 |
| 9          | 11  | 8.0 | 7.4 | 7.1 | 6.8 | 6.5 |
| 12         | 9.7 | 7.6 | 7.2 | 6.9 | 6.7 | 6.4 |
| 18         | 8.4 | 7.2 | 6.9 | 6.7 | 6.5 | 6.3 |
| 30         | 7.2 | 6.6 | 6.5 | 6.4 | 6.2 | 6.1 |

Table 0-9. Same as top, but assuming additional foreground decorrelation parameters.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 11  | 9.4 | 8.6 | 7.7 | 7.0 |
| 6          | 18  | 9.6 | 8.6 | 8.0 | 7.4 | 6.8 |
| 9          | 14  | 9.0 | 8.2 | 7.8 | 7.2 | 6.7 |
| 12         | 12  | 8.5 | 7.9 | 7.5 | 7.1 | 6.6 |
| 18         | 9.7 | 7.9 | 7.4 | 7.1 | 6.8 | 6.4 |
| 30         | 7.9 | 7.0 | 6.8 | 6.6 | 6.4 | 6.1 |

Table 0-10. Same as top, but assuming we keep the 58% cleanest part of the full sky

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 9.0 | 7.7 | 7.1 | 6.5 | 5.7 |
| 6          | 13  | 7.7 | 6.9 | 6.5 | 6.2 | 5.8 |
| 9          | 9.7 | 7.0 | 6.5 | 6.2 | 5.9 | 5.6 |
| 12         | 8.2 | 6.5 | 6.1 | 5.9 | 5.7 | 5.4 |
| 18         | 6.8 | 5.9 | 5.7 | 5.5 | 5.3 | 5.1 |
| 30         | 5.6 | 5.2 | 5.1 | 5.0 | 4.9 | 4.7 |

**Table 0-11.** Combined  $10^4 \times 95$  percent C.L., for r=0 after 7 years of observation, keeping only the 28% cleanest part of the sky, assuming no decorrelation and observing efficiency in Chile same as at Pole.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 14  | 11  | 9.7 | 8.6 | 7.6 |
| 6          | 26  | 12  | 10  | 9.1 | 8.3 | 7.4 |
| 9          | 18  | 11  | 9.6 | 8.8 | 8.1 | 7.3 |
| 12         | 15  | 10  | 9.2 | 8.6 | 7.9 | 7.2 |
| 18         | 12  | 9.3 | 8.6 | 8.2 | 7.7 | 7.1 |
| 30         | 9.3 | 8.1 | 7.8 | 7.5 | 7.2 | 6.8 |

Table 0-12. Same as top, but assuming 50% Chilean efficiency.

| Chile\Pole | 0  | 6   | 9   | 12  | 18  | 30  |
|------------|----|-----|-----|-----|-----|-----|
| 0          |    | 14  | 11  | 9.7 | 8.6 | 7.6 |
| 6          | 46 | 13  | 10  | 9.4 | 8.5 | 7.5 |
| 9          | 31 | 12  | 10  | 9.2 | 8.4 | 7.5 |
| 12         | 24 | 12  | 9.9 | 9.1 | 8.3 | 7.4 |
| 18         | 19 | 11  | 9.5 | 8.8 | 8.1 | 7.3 |
| 30         | 13 | 9.6 | 8.8 | 8.3 | 7.8 | 7.1 |

Table 0-13. Same as top, but assuming 1% unmodeled foreground residual uncertainty.

| Chile\Pole | 0  | 6  | 9  | 12  | 18  | 30  |
|------------|----|----|----|-----|-----|-----|
| 0          |    | 15 | 13 | 12  | 11  | 10  |
| 6          | 27 | 13 | 12 | 11  | 11  | 9.9 |
| 9          | 20 | 13 | 11 | 11  | 10  | 9.8 |
| 12         | 16 | 12 | 11 | 11  | 10  | 9.7 |
| 18         | 14 | 11 | 11 | 10  | 9.9 | 9.5 |
| 30         | 11 | 10 | 10 | 9.9 | 9.6 | 9.3 |

**Table 0-14.** Same as top, but assuming additional foreground decorrelation parameters.

| Chile\Pole | 0  | 6  | 9  | 12  | 18  | 30  |
|------------|----|----|----|-----|-----|-----|
| 0          |    | 18 | 15 | 13  | 11  | 9.5 |
| 6          | 34 | 16 | 13 | 12  | 11  | 9.3 |
| 9          | 25 | 14 | 13 | 12  | 10  | 9.2 |
| 12         | 21 | 14 | 12 | 11  | 10  | 9.1 |
| 18         | 16 | 12 | 11 | 11  | 9.8 | 8.8 |
| 30         | 13 | 11 | 10 | 9.8 | 9.2 | 8.5 |

Table 0-15. Same as top, but assuming we keep the 58% cleanest part of the full sky

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 14  | 11  | 9.7 | 8.6 | 7.6 |
| 6          | 24  | 12  | 9.9 | 9.0 | 8.2 | 7.4 |
| 9          | 17  | 11  | 9.3 | 8.6 | 8.0 | 7.2 |
| 12         | 14  | 9.8 | 8.9 | 8.3 | 7.7 | 7.1 |
| 18         | 11  | 8.8 | 8.2 | 7.8 | 7.4 | 6.9 |
| 30         | 8.5 | 7.6 | 7.3 | 7.1 | 6.8 | 6.5 |

**Table 0-16.** Combined detection significance for r=0.003 after 7 years of observation, keeping only the 28% cleanest part of the sky, assuming no decorrelation and observing efficiency in Chile same as at Polee.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 3.7 | 4.5 | 4.9 | 5.4 | 6.0 |
| 6          | 2.2 | 4.3 | 4.8 | 5.2 | 5.6 | 6.1 |
| 9          | 3.0 | 4.6 | 5.1 | 5.4 | 5.8 | 6.3 |
| 12         | 3.6 | 4.9 | 5.3 | 5.6 | 5.9 | 6.4 |
| 18         | 4.4 | 5.3 | 5.7 | 5.9 | 6.2 | 6.6 |
| 30         | 5.4 | 6.0 | 6.2 | 6.4 | 6.6 | 6.9 |

Table 0-17. Same as top, but assuming 50% Chilean efficiency.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 3.7 | 4.5 | 4.9 | 5.4 | 6.0 |
| 6          | 1.3 | 4.0 | 4.6 | 5.0 | 5.5 | 6.0 |
| 9          | 1.9 | 4.2 | 4.8 | 5.1 | 5.5 | 6.1 |
| 12         | 2.4 | 4.3 | 4.9 | 5.2 | 5.6 | 6.1 |
| 18         | 3.0 | 4.6 | 5.1 | 5.4 | 5.8 | 6.3 |
| 30         | 4.0 | 5.2 | 5.5 | 5.8 | 6.1 | 6.5 |

**Table 0-18.** Same as top, but assuming 1% unmodeled foreground residual uncertainty.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 3.5 | 4.1 | 4.4 | 4.8 | 5.2 |
| 6          | 2.2 | 4.0 | 4.4 | 4.7 | 5.0 | 5.3 |
| 9          | 2.9 | 4.2 | 4.6 | 4.8 | 5.1 | 5.4 |
| 12         | 3.4 | 4.5 | 4.8 | 5.0 | 5.2 | 5.5 |
| 18         | 4.0 | 4.7 | 5.0 | 5.1 | 5.4 | 5.6 |
| 30         | 4.7 | 5.2 | 5.3 | 5.4 | 5.6 | 5.8 |

Table 0-19. Same as top, but assuming additional foreground decorrelation paramaters.

| Chile\Pole | 0   | 6   | 9   | 12  | 18  | 30  |
|------------|-----|-----|-----|-----|-----|-----|
| 0          |     | 3.0 | 3.6 | 4.0 | 4.5 | 5.1 |
| 6          | 1.7 | 3.5 | 3.9 | 4.3 | 4.7 | 5.2 |
| 9          | 2.3 | 3.7 | 4.1 | 4.4 | 4.8 | 5.3 |
| 12         | 2.8 | 3.9 | 4.3 | 4.6 | 4.9 | 5.4 |
| 18         | 3.4 | 4.3 | 4.6 | 4.8 | 5.1 | 5.6 |
| 30         | 4.2 | 4.8 | 5.0 | 5.2 | 5.5 | 5.8 |

Table 0-20. Same as top, but assuming we keep the 58% cleanest part of the full sky

| Chile\Pole | 0   | 6   | 9   | 12         | 18  | 30  |
|------------|-----|-----|-----|------------|-----|-----|
| 0          |     | 3.8 | 4.5 | 5.0        | 5.3 | 6.2 |
| 6          | 2.4 | 4.4 | 5.0 | <b>5.4</b> | 5.8 | 6.3 |
| 9          | 3.3 | 4.9 | 5.3 | 5.6        | 6.0 | 6.5 |
| 12         | 4.0 | 5.2 | 5.6 | 5.9        | 6.2 | 6.7 |
| 18         | 4.9 | 5.8 | 6.1 | 6.3        | 6.6 | 7.0 |
| 30         | 6.1 | 6.6 | 6.8 | 7.0        | 7.2 | 7.5 |