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Abstract

In this note, we try to understand what are the factors involved in the statistics of the power spectra of noise simulations
with a non-uniform weighting. We use a simple 1D model to simplify the maths.

1 Simple simulations

We generate a vector xi of Nmodes = 104 random variables N (µn, σn). We will use µn = 0 and σn = 1.
We then create different types of hitmaps hi (shown in the posting).
We compute noise vectors:

ni =
xi√
hi

(1)

These represent noisy data points of variance 1/hi.
We also generate a signal vector si from Gaussian random variables N (0, σs).

2 Power estimation

We design an estimator of the bandpower BP of a vector v :
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The weights wi are to be chosen, we will later use the hitcount map as it represents the inverse variance of the noise.
Our goal in this note is to derive the variance of the bandpowers:

Var(BP) =<< BP2 > − < BP >2> . (3)

Let’s first compute < BP2 >:
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Using the fact that since xi and xj are independent, < xixj >=< xi >< xj >, and using the notation:

µn =< xn >=
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(7)

then
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Which can be simplified to
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2.1 Gaussian noise case

In the case where the noise is Gaussian, µ4 = 3σ4
n and µ2 = σ2

n, and we get :
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and
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If we weigh our estimator with the hitcount map, i.e. wi = hi (which should be the optimal choice), we get:
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and
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2.2 Gaussian signal case

In the case of Gaussian we have µ4 = 3σ4
s and µ2 = σ2

s and there is no hitcount weighting (see equation 1). Then we get
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If we weigh our estimator with the hitcount map, i.e. wi = hi the expression is of course simply
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3 Effective fsky

The effective number of degrees of freedom is given by :

k = 2
< BP >2

Var(BP)
(17)

The effective fsky is then the ratio of these degrees of freedom to the total number of modes on the full sky, i.e.
Nmodes:
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fsky,eff =
k

Nmodes
. (18)

using equation 10 and 11 (or 14 and 15), we get
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In the case where we weigh using the hitcount map, we get:
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